
@paulacqure

@CQUREAcademy

Consulting services

→ High quality penetration tests with useful reports

Applications

Websites

External services (edge)

Internal services

+ configuration reviews

→ Incident response emergency services

– immediate reaction!

→ Security architecture and design advisory

→ Forensics investigation

→ Security awareness

For management and employees

info@cqure.us

Trainings

→ Security Awareness trainings for executives

→ CQURE Academy: over 40 advanced security

trainings for IT Teams

→ Certificates and exams

→ Delivered all around the world only by a CQURE

Team: training authors

Class names for keys from HKLM\SYSTEM\CCS\Control\Lsa

HKLM\SECURITY\Cache

HKLM\SECURITY\Policy\Secrets

HKLM\SECURITY\Policy\Secrets

DK = PBKDF2(PRF, Password, Salt, c, dkLen)

Microsoft’s implementation: MSDCC2=

PBKDF2(HMAC-SHA1, DCC1, username, 10240, 16)

Legend

Before the attacks facilitated by pass-the-hash, we can only

rejoice the "salting" by the username.

There are a number pre-computed tables for users as

Administrator facilitating attacks on these hashes.

There is actually not much of a difference with XP / 2003!

No additional salting.

PBKDF2 introduced a new variable: the number of

iterations SHA1 with the same salt as before (username).

The number of iterations in PBKDF2, it is

configurable through the registry:

HKEY_LOCAL_MACHINE\SECURITY\Cache

DWORD (32) NL$IterationCount

If the number is less than 10240, it is a multiplier

by 1024 (20 therefore gives 20480 iterations)

If the number is greater than 10240, it is the

number of iterations (rounded to 1024)

Getting the: cached data

MSDCC2

1.bootkey: classes from HKLM\SYSTEM\CCS\Control\Lsa + [class

names for: Data, GBG, JD, Skew1] (+arrays’ permutations)

int[] permutationBootKey = new int[] { 0x8, 0x5, 0x4, 0x2,

0xb, 0x9, 0xd, 0x3, 0x0, 0x6, 0x1, 0xc, 0xe, 0xa, 0xf, 0x7

};

2.PolEKList: HKLM\SECURITY\Policy\PolEKList [default value]

3.lsakey: AES_DECRYPT(key, data) -> AES(bootkey, PolEKList)

4.NL$KM secret: HKLM\SECURITY\Policy\Secrets\NL$KM

5.nlkm_decrypted: AES_DECRYPT(lsakey, NL$KM secret)

6.Cache_Entry{id} -> HKLM\SECURITY\Cache\NL${id}

7.cache_entry_decrypted -> AES_DECRYPT(nlkm_decrypted,

Cache_Entry{id})

Based on the following components:

Password, data blob, entropy

Is not prone to password resets!

Protects from outsiders when being in offline access

Effectively protects users data

Stores the password history

You need to be able to get access to some of your passwords
from the past

Conclusion: OS greatly helps us to protect secrets

Getting the: DPAPI Secrets
DPAPI (classic)

A. MasterKey

1. pwdhash = MD4(password) or SHA1(password)

2. pwdhash_key = HMACSHA1(pwdhash, user_sid)

3. PBKDF2(…, pwdhash_key,…), another elements from the file. Windows 10 no domain: SHA512,

AES-256, 8000 rounds

4. Control – HMACSHA512

B. CREDHIST

1. pwdhash = MD4(password) or SHA1(password)

2. pwdhash_key = HMACSHA1(pwdhash, user_sid)

3. PBKDF2(…, pwdhash_key,…), another elements from the file. Windows 10 no domain: SHA512,

AES-256, 8000 rounds

4. Control – HMACSHA512

C. DPAPI blob Algorithms are written in the blob itself.

DPAPI-NG

A. RootKey Algorithms Key derivation function: SP800_108_CTR_HMAC (SHA512) Secret agreement:

Diffie-Hellman

B. DPAPI blob Key derivation: KDF_SP80056A_CONCAT

After getting the key, there is a need for decryption: Key wrap algorithm: RFC3394 (KEK ->

CEK) Decryption: AES-256-GCM (CEK, Blob)

Used to group one or more Web Applications

Purpose: Assign resources, serve as a security sandbox

Use Worker Processes (w3wp.exe)

Their identity is defined in Application Pool settings

Process requests to the applications

Passwords for AppPool identity can be ’decrypted’ even offline

They are stored in the encrypted form in applicationHost.config

Conclusion: IIS relies it’s security on Machine Keys (Local System)

Store configuration in the registry

Always need some identity to run the executable!

Local Security Authority (LSA) Secrets

Must be stored locally, especially when domain credentials are used

Can be accessed when we impersonate to Local System

Their accounts should be monitored

If you cannot use gMSA, MSA, use subscription for svc_ accounts (naming convention)

Conclusion: Think twice before using an Administrative account, use gMSA

The above means:

To read the clear text password you need to struggle!

Getting the: Hash

SAM

1. bootkey: classes from HKLM\SYSTEM\CCS\Control\Lsa +

[class names for: Data, GBG, JD, Skew1] (+arrays’

permutations)

2. F: HKLM\SAM\SAM\Domains\Account\ [F – value] string

aqwerty =

“!@#$%^&*()qwertyUIOPAzxcvbnmQQQQQQQQQQQQ)(*@&%\0”;

string anum =

“0123456789012345678901234567890123456789\0”;

3. rchbootkey: MD5(string created after arytmetic

functions with F, aqwerty, anum, bootkey)

4. hbootkey: RC4(key, data) -> RC4(rchbootkey, F)

5. MD5(…,hbootkey,…) -> RC4(…)-> DES(…, F) to get the

hash (MD4)

https://cqu.re/30dayWindowsSecurity

https://cqu.re/quiz

To get SLIDES & TOOLS
(and not to miss out on my video tutorials):

The best option – all of the above!

I won’t think you’re a stalker, promise

Sign up for our Newsletter

Cqureacademy.com/newsletter

Like CQURE Academy on Facebook

Facebook.com/CQURE

Follow me on Twitter

@PaulaCqure

