

2019 NT KONFERENCA

× •

21. - 23. MAJ 2019

Lessons from the Field: Vulnerabilities in Credentials & How to Fix Them

Dr. Mike Jankowski - Lorek

CQURE: Cloud Solutions & Security Expert CQURE Academy: Trainer mike@cqure.pl www.cqureacademy.com www.cqure.pl

About CQURE – Areas of Expertise

Knowledge Sharing (Trainings and Conferences)

Image: Construction

Security Services and Consulting

CQURE Cyber Lab Research & Development

About CQURE – Consulting

Vulnerability Assessment

Social Engineering Tests **Reverse Engineering** Red Teaming

Security Code Review

Configuration Review

Penetration Testing

Security Consulting

Hardening Personal Data Protection Audits

> Implementations **GDPR** Audits

Optimalization Migrations

Forensics and Incident Handling Services

About CQURE – Appearances

Microsoft

Microsoft Ignite

Microsoft tech_idays

TechEd Microsoft

DIC

CQURE

6

Set of data that allows other party to believe me when I tell who I am

- > Memory
- > Registry
- Databases (\rangle)
- > Network traffic
- Active Directory (\rangle)

Credentials Where are those?

CQURE

Bootkey:

Class names for keys from HKLM\SYSTEM\CCS\Control\Lsa

SAM/NTDS.dit (MD4 Hashes) C:\windows\system32\config C:\windows\system32\NTDS

LSA Secrets (Service Accounts) HKLM\SECURITY\Policy\Secrets

> MSDCC2 (Cached Logon Data) HKLM\SECURITY\Cache

More information: http://cqureacademy.com/blog

Demo-Config files

 $\mathbf{\nabla}$

V

Kernel Mode

w3wp.exe

A lot of things going on here, but not that important for us now.

HTTP.SYS

CQURE

Application Pools

Used to group one or more Web Applications

Purpose: Assign resources, serve as a security sandbox

Use Worker Processes (w3wp.exe)

Their identity is defined in Application Pool settings Process requests to the applications

They are stored in the encrypted form in applicationHost.config

Conclusion: IIS relies its security on Machine Keys (Local System)

Passwords for AppPool identity can be 'decrypted' even offline

Demo-IIS

 $\mathbf{\nabla}$

 ∇

Store configuration in the registry Always need some identity to run the executable! Local Security Authority (LSA) Secrets

Must be stored locally, especially when domain credentials are used Can be accessed when we impersonate to Local System

Their accounts should be monitored

If you cannot use gMSA, MSA, use subscription for svc_accounts (naming convention)

Conclusion: Think twice before using an Administrative account, use gMSA

Services

Demo-Services

 $\mathbf{\nabla}$

V

Chasing the obvious: NTDS.DIT, SAM

- To perform an analysis on NTDS.DIT you need to steal from the domain controller: ✓ NTDS.DIT
 - Registry hives (at least the SYSTEM hive)

SAM, ntds.dit are stored locally on the server's drive They do not contain Passwords They use MD4 as a way of storing them They are encrypted

The above means: To read the clear text password you need to struggle!

Demo-SAM/NTDS.dit

 ∇

Are 'cached credentials' safe?

CQURE

Cached Credentials

Encrypted Cached Credentials DK = PBKDF2(PRF, Password, Salt, c, dkLen)

Microsoft's implementation: MSDCC2= PBKDF2(HMAC-SHA1, DCC1, username, 10240, 16)

0		0	~		-	-	-	~	~	-	-	~	-	-	-	04 00 45 60 00 D 00 D 0
<u> </u>	+	4	3	4	2	0		8	3	Ą	B	Ļ.	ų	E	Ľ	UI23456/89ABCDEF
10	00	AO	00	10	00	1C	00	00	00	00	00	00	00	00	00	· · · · · · · · · · · · · · · · · · ·
8B	04	00	00	01	02	00	00	02	00	00	00	AO	00	18	00	<
26	C7	A8	43	88	7F	DO	01	04	00	01	00	01	00	00	00	&Ç"C^.Đ
01	00	A0	00	10	00	00	00	10	00	00	00	12	00	24	00	\$
4A	4 F	26	0.5	63	9B	C3	22	9F	97	77	E6	B0	CD	52	BA	JO&.c>Ä"Ÿ—wæ°ÌR°
CO	76	14	67	D6	68	37	04	87	72	95	DC	19	6D	26	90	Àv.gÖh7.‡r•Ü.m&.
15	5C	25	C7	A8	17	05	7B	A3	DO	5C	6F	3C	A7	82	4A	.\%Ç"{£Ð\o<≶,J
52	72	D1	B6	1F	91	6B	B7	9C	D2	20	9A	1B	25	\mathbf{ED}	AO	RrѶ. k œÒ š.%i
68	E5	4D	ЗE	42	F6	C4	BA	68	A1	BD	CB	5A	73	4A	89	håM>Böİh;¾ËZsJ‰
07	C7	E2	C5	50	20	4E	D6	CD	02	BA	BB	Ε6	E9	CA	FO	.ÇâÅP NÖÍ.°≫æéÊð
8C	17	4 E	\mathbf{CF}	60	F7	90	D3	37	\mathbf{FB}	30	4B	C3	95	B7	02	Œ.NÏ`÷.Ó7û0KÕ•.
D6	38	75	63	D2	OF	15	AD	ЗA	C4	32	53	D5	8B	66	7D	Ö8ucÒ:Ä2SÕ< f}
9D	FB	5D	AA	30	7E	B7	A5	F5	9B	57	32	D9	47	EE	EE	.û]≛0~ .¥õ >W2ÙGîî
5C	07	6C	3B	64	78	A7	B1	78	C2	EA	F5	98	A 8	CB	B1	\.l;dx§±xÂêõ~"˱
DD	34	92	00	93	9F	65	9D	38	E7	7B	F9	69	53	97	50	Ý4′."Ÿe.8ç{ùiS-P
СВ	82	49	38	CF	B4	CA	F9	4B	EB	D8	8E	4C	D4	6D	CE	Ë,I8Ï´ÊùKëØŽLÔmÎ
09	7E	6F	F6	65	49	C6	9F	61	8D	4A	16	24	3A	40	CB	.~oöeIÆŸa.J.\$:@Ë
cc	3C	D8	FD	FC	91	6B	E5	84	5E	68	9C	69	D7	В4	FD	Ì<Øýü`kå"^hœi×´ý
62	44	8D	23	E8	0A	1E	BE	BB	34	EB	81	23	FE	E3	0E	bD.#è¾»4ë.#bã.
76	55	9E	63	9E	DE	57	DC	00	60	BE	A 8	53	AF	BD	AA	vUžcž₽WÜ.`%~S %*
AB	ЗF	ED	7A	EE	B4	62	50	EC	E1	B8	B1	8F	9E	A6	2B	«?ízî'bPìá.±.ž!+
9B	85	71	63	D9	6C	66	09	C2	70	DC	63	E6	22	E8	08	>gcÙlf.ÂpÜcæ"è.
A 4	55	5F	36	C2	64	1E	2B	B8	80	64	AS	AC	17	92	41	¤U 6Âd.+.€i¥⊣.'A
30	21	2E	DF	CC	EA	75	9E	99	31	C4	De	80	AF	C7	04	.BTAuž¤1ĂŎŒ C</td
00		~~	DL	00	LIFE				01	01	20	00			<u> </u>	Constear thou of

Encrypted Cached Credentials: Legend

Name	Value	Start	Size	Color		Co
struct Header h		0h	96	Fg:	Bg:	
ushort uname_len	16	0h	2	Fg:	Bg:	
ushort domain_len	10	2h	2	Fg:	Bg:	
ushort mail_nick_len	16	4h	2	Fg:	Bg:	
ushort cn_len	28	6h	2	Fg:	Bg: 🗾	
ushort u 1	0	8h	2	Fg:	Bg:	
ushort logon_script_len	0	Ah	2	Fg:	Bg: 🗾	
ushort profile_path_len	0	Ch	2	Fg:	Bg: 🔜	
ushort home_dir_len	0	Eh	2	Fg:	Bg: 🔜	
uint user_sid	1163	10h	4	Fg:	Bg:	
uint primary_group_id	513	14h	4	Fg:	Bg:	
uint u2	2	18h	4	Fg:	Bg:	
ushort group_sids_len	10	1Ch	2	Fg:	Bg:	
ushort domain_netbios_name	24	1Eh	2	Fg:	Bg: 📃	
FILETIME last_local_logon	04/25/2015 18:47:22	20h	8	Fg:	Bg: 🗾	
ushort u3	4	28h	2	Fg:	Bg:	
ushort u4	1	2Ah	2	Fg:	Bg:	
uint u5	1	2Ch	4	Fg:	Bg:	
ushort u6	1	30h	2	Fg:	Bg:	
ushort u7	10	32h	2	Fg:	Bg:	
uint u8	16	34h	4	Fg:	Bg:	
uint u9	16	38h	4	Fg:	Bg:	
ushort domain_name_len	18	3Ch	2	Fg:	Bg: 🔜	
ushort email_len	36	3Eh	2	Fg:	Bg: 🗾	
byte iv[16]	JO& c>Ã"Ÿ—wæ⁰ÍR⁰	40h	16	Fg:	Bg: 🗾	
N hyte cksum[16]	Ày¶oÖh7-I‡raÜlm&	50h	16	Eat	Bo:	

Cached Logons: It used to be like that...

Windows 2003 / XP

```
The encryption algorithm is RC4.
The hash is used to verify authentication is calculated as follows:
DCC1 = MD4 (MD4 (Unicode (password)) .
LowerUnicode (username))
is
DCC1 = MD4 (hashNTLM . LowerUnicode (username) )
```

> Usage in attacks

Before the attacks facilitated by pass-the-hash, we can only rejoice the "salting" by the username.

There are a number pre-computed tables for users as Administrator facilitating attacks on these hashes.

CQURE

Cached Logons: Now it is like this!

Windows Vista / 2008+

The encryption algorithm is AES128. The hash is used to verify authentication is calculated as follows: MSDCC2 = PBKDF2 (HMAC-SHA1, Iterations, DCC1, LowerUnicode(username))

with DCC 1 calculated in the same way as for 2003 / XP.

> Usage in attacks

There is actually not much of a difference with XP / 2003! No additional salting.

PBKDF2 introduced a new variable: the number of iterations SHA1 with the same salt as before (username).

COURE

Cached Logons: Iterations

The number of iterations in PBKDF2, it is configurable through the registry:

HKEY_LOCAL_MACHINE\SECURITY\Cache DWORD (32) NL\$IterationCount

If the number is less than 10240, it is multiplied by 1024 (20 therefore gives 20480 iterations)

If the number is greater than 10240, it is the number of iterations (rounded to 1024)

a di seconda			
File Edit View Favorites Help			
Computer HKEY_CLASSES_ROOT HKEY_CURRENT_USER HKEY_LOCAL_MACHINE BCD0000000 BCD0000000 BCD0000000 BCD0000000 BCD0000000 BCD0000000 BCD0000000 BCD0000000 BCD0000000 BC00000000 BC00000000 BC00000000 BC00000000 BC00000000 BC00000000 BC00000000 BC000000000 BC000000000 BC000000000000 <p< th=""><th>fault) REG_S S1 REG_E S10 REG_E S2 REG_E S3 REG_E S4 REG_E S5 REG_E S6 REG_E S6 REG_E S7 REG_E S8 REG_E S9 REG_E S2 REG_E</th><th>Data SZ (value not s BINARY 1a 00 0c 00 BINARY 00 00 00 00 BINARY 00 00 00 00 BINARY 10 00 0c 00 BINARY 00 00 00 00</th><th>ret) 1a 00 00 00 00 00 00 00 00 (00 00 00 00 00 00 00 00 (10 00 00 00 00 00 00 00 (08 00 00 00 00 00 00 00 (00 00 00 00 00 00 00 00 (</th></p<>	fault) REG_S S1 REG_E S10 REG_E S2 REG_E S3 REG_E S4 REG_E S5 REG_E S6 REG_E S6 REG_E S7 REG_E S8 REG_E S9 REG_E S2 REG_E	Data SZ (value not s BINARY 1a 00 0c 00 BINARY 00 00 00 00 BINARY 00 00 00 00 BINARY 10 00 0c 00 BINARY 00 00 00 00	ret) 1a 00 00 00 00 00 00 00 00 (00 00 00 00 00 00 00 00 (10 00 00 00 00 00 00 00 (08 00 00 00 00 00 00 00 (00 00 00 00 00 00 00 00 (

COURE

Demo-Cached Creds

 $\mathbf{\nabla}$

V

AUTHORIZED DERSONNEL DERSONNEL

25

Classic Data Protection API

Based on the following components: Password, data blob, entropy

Is not prone to password resets!
Protects from outsiders when being in offline access
Effectively protects users data

Stores the password history

You need to be able to get access to some of your passwords from the past

Conclusion: OS greatly helps us to protect secrets

Demo-DPAPI

 $\mathbf{\nabla}$

 ∇

Demo-DPAPI-NG

 $\mathbf{\nabla}$

 ∇

Ask users politely?

CQURE

28

Credentials Security Takeways

> Offline access

Cryptography that relies on keys stored in the registry is as safe as your offline access.

Domain Admins

We all know that they should log on to the Domain Controllers only. Who are they? Can we trust them?

Mechanisms are safe

...when extracted. In practice they are as safe as your approach.

CQURE

Lessons from the Field: Vulnerabilities in Credentials & How to Fix Them

Dr. Mike Jankowski - Lorek

CQURE: Cloud Solutions & Security Expert CQURE Academy: Trainer mike@cqure.pl www.cqureacademy.com www.cqure.pl

